Enclosed Discharge Safety Relief Valves

Seetru Limited

for liquid

Type 980 Threaded

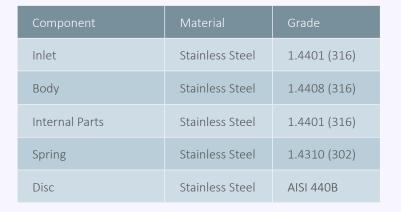
Safety valves made from Stainless Steel < Enclosed discharge valve with threaded connections < Metal to metal sealing <

Example Applications

- Pumping systems and Hydraulic systems
- Thermal relief
- Waste water management
- Oil transfer
- Petrochemical industries
- Fire fighting equipment
- Water cooling and feeding systems
- Chemical process

Specifications

- Inlet connections: 1/2" to 2" threaded connections (depending on valve bore size)
 - *For flanged connections see datasheet 980 Flanged
- Temperature range:-50°C to +250°C (depending on body o'ring material)
- Pressure range: 0.3 to 36.0 bar (depending on valve bore size)



Approvals

- Designed in accordance with BS EN ISO-4126-1 &-7
- PED 2014/68/EU (CE)
- PE(S)R UK SI 2016 No. 1105 (UKCA)
- FΔ(
- Leak tightness at 90% set pressure to API 527 and in accordance with EN ISO 4126-1

CE CH FIII

Materials of Construction

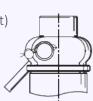
Seal Materials

This valve using metal to metal sealing. There is a choice of o'ring used for the sealed cap/lever.

O'ring material – Top cap

Temperature Range

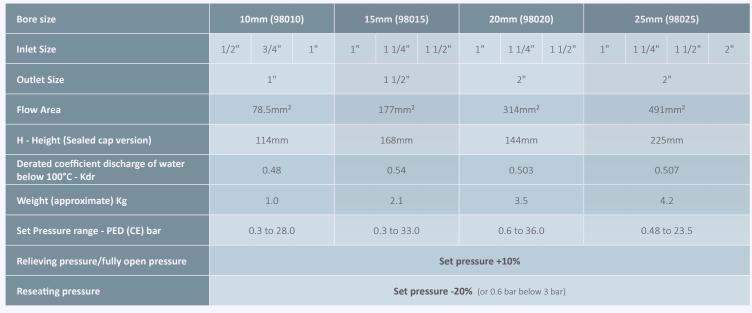
O'ring material – Top cap	Temperature Range			
Viton® (FKM)	-20°C to +250°C			
Nitrile (NBR)	-30°C to +150°C			
Silicone	-50°C to +250°C			
EPDM	-40°C to +150°C			


Standard seal materials shown, others are available.

Easing Gear / Lifting Gear / Top Fitting Options

Sealed Cap (gas tight cap)

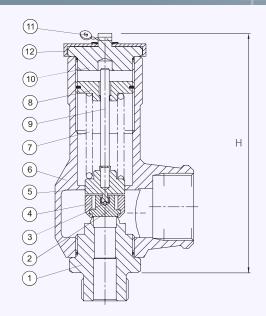
Sealed lever (gas tight)



Page 1

Technical information by bore size

• Leak tightness at 90% set pressure to API 527 and in accordance with EN ISO 4126-1.


Standard INLET Connection Types

- BSP parallel male thread
- BSP taper male thread
- NPT male thread
- BSP parallel female thread (limited option)

Standard OUTLET Connection Types

• BSP parallel female thread

Valve Drawing

Valve Selection Guide

Valve type	Select Bore	Inlet Size	Inlet Thread Type	Top Fitting	O'ring material (for cap)	Set pressure
980	Select bore size from above table	Select inlet size from above table	Select Inlet Thread type	Select easing gear/top fitting	See table	Set pressure from available range

EAC marking available upon request

*Please send your selected details to Seetru and we can provide the full ordering code, price and lead-time.

Example of Valve Selection Process

Example	980	15	1"	BSP parallel	Sealed Lever	Viton	17.5 bar
Selection	Valve Type	Bore = 15mm	Inlet Size	Inlet Thread Type	Top Fitting	O'ring	Set Pressure

Type 980 Capacity Table - In accordance with EN ISO 4126-1 Water below 100°C at 10% accumulation - litres/min

Set Pressure		Bore Size (D0)					
		10mm	15mm	20mm	25mm		
bar	psi	Litres/min of Water	Litres/min of Water	Litres/min of Water	Litres/min of Water		
3	43.5	58	147	243	383		
4	58	67	169	281	443		
5	72.5	74	189	314	495		
6	87.00	82	207	344	542		
7	101.5	89	224	372	585		
8	116	95	240	397	626		
9	130.5	100	254	422	664		
10	145	106	268	444	700		
15	217.5	130	328	544	857		
20	290	150	379	628	990		
25	362.5	167	424	703			
28	406	177	449	744			
30	435		465	770			
33	478.5		487	807			
35	507.5			831			
36	522			843			

For any intermediate pressures/flows please contact Seetru

